

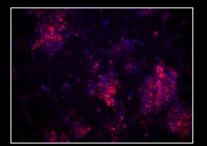
Surveillance of Permethrin Resistance in Valdosta populations of *Aedes albopictus*

Emily Evans Valdosta State University

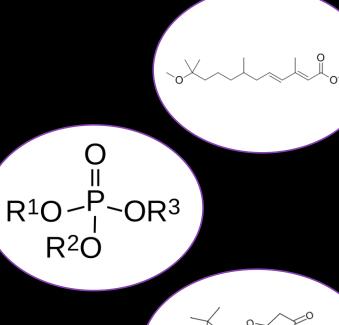
Integrated Mosquito Management

Population Control Strategies

Physical

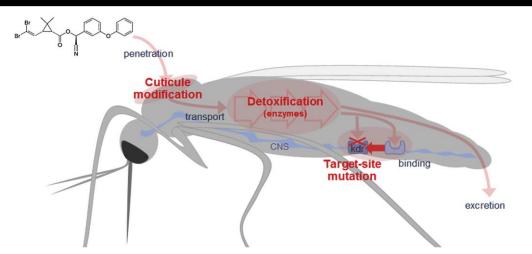


Biological

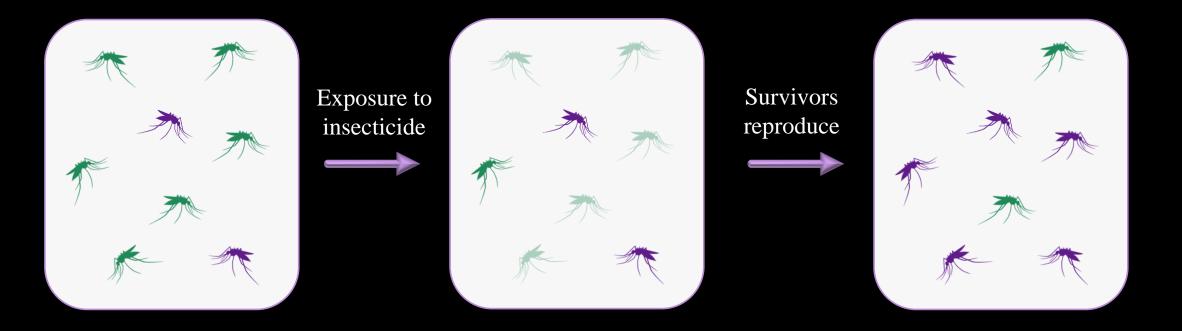


Chemical

Mechanisms of Resistance


Behavioral: changes of action/habit that prevent exposure to insecticide

• exophilic (outdoor dwelling) strains avoid exposure to insecticides distributed by indoor residual spraying


Physiological: better accommodation of the insecticide through functional changes of body parts

- increased detoxification through the possession of higher levels or more efficient forms of enzymes (metabolic)
- reduced neuronal sensitivity to insecticides (KDR)
- reduced penetration across the cuticle due to structural or compositional modifications
- increased excretion or sequestration of insecticide

Cross-resistance: the resistance of one insecticide leading to resistance of a different unused insecticide with a similar mode of action

Artificial Selection of Insecticide Resistant Mosquitoes

A few mosquitoes have insecticide resistant alleles. Most mosquitoes have nonresistant (susceptible) alleles. Mosquitoes with resistant alleles have greater survivorship when exposed to the insecticide. Since surviving mosquitoes have a higher tendency to reproduce, **majority of the population** now consists of offspring with resistant alleles.

Reproductive Cycle

Egg

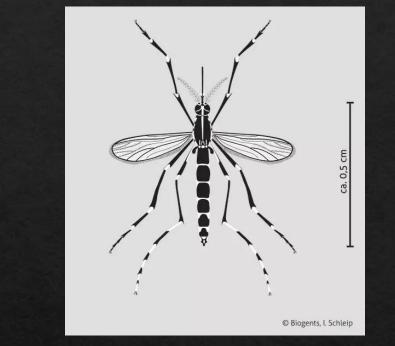
• can remain dormant for months until optimal conditions arise

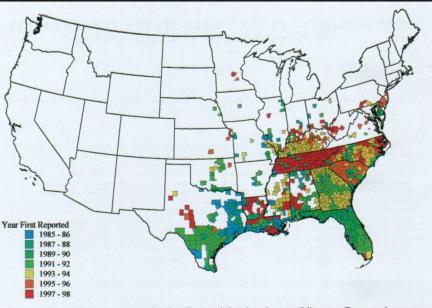
Larva

• develop into pupa in as little as 5 days

Adult

 lays eggs 4-5 days after blood meal

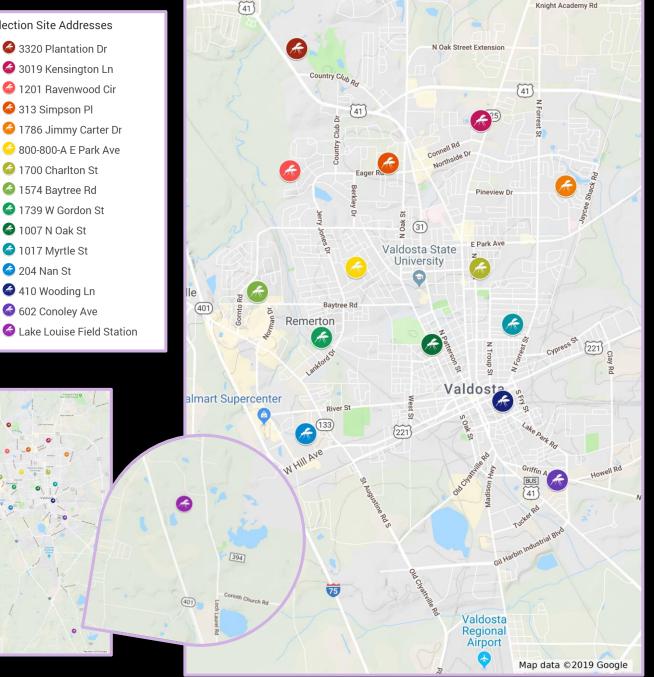



Pupa

• develop into adults within 2-3 days

Objectives

- To provide baseline data of local (Valdosta) permethrin resistance in *Aedes albopictus*
- To detect presence of knockdown resistance mutations (V1016G and F1534C)


Species Description

- Originated in tropical forests of South-East Asia First discovered in the US (Texas) in 1985
- Overwinter in the egg stage in temperate climates
- Dark colored mosquito with a silvery-white scale line extending medially on scutum and banded legs
- Short flight range; <200m from its breeding site
- Has tested positive for arboviruses such as Zika, Chikungunya, Dengue, Yellow Fever, West Nile, and Eastern equine encephalitis among others
- Potential bridge vector as it feeds during daylight hours on a variety of vertebrates (including humans)

Fig. 1. U.S. counties that have reported *Aedes albopictus* infestations, by year of discovery. Two-year classes were used to simplify the map.

Collection Site Addresses

- 3320 Plantation Dr
- 🙆 3019 Kensington Ln
- 6 1201 Ravenwood Cir
- 313 Simpson Pl
- 6 1786 Jimmy Carter Dr
- 🕝 800-800-A E Park Ave
- 1700 Charlton St
- 1574 Baytree Rd
- 🕝 1739 W Gordon St
- 🕝 1007 N Oak St
- 🕝 1017 Myrtle St
- 🙆 204 Nan St
- 410 Wooding Ln
- lake Louise Field Station

Egg Collection Sites

Black 9 Oz cups fitted with:

- Hay-infused gravid water filled to $\sim 1/2$ " from rim
- Textured paper cut to 2" X 9" ullet
- Standard size wooden clothespin •

Rearing

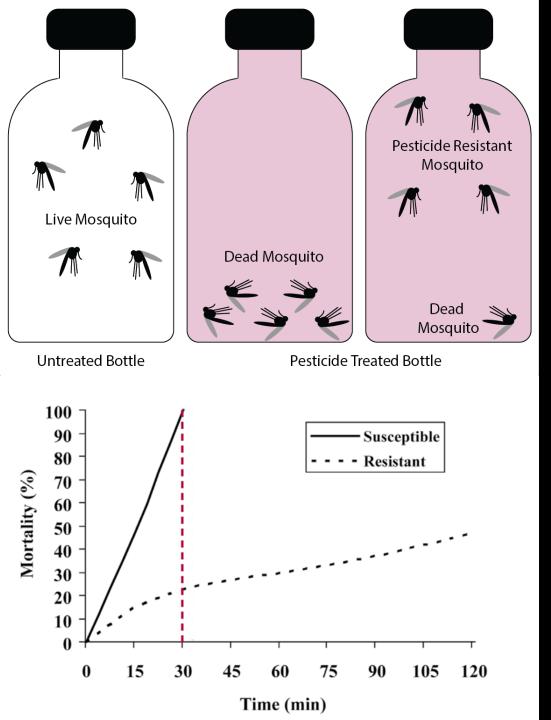
Rearing container (14.00"L x 8.00"W x 4.88"H) filled with 1L distilled water and 2mL of bovine liver solution (40g/500mL)

•

- Egg collection papers gently rinsed of dirt and debris before placing into rearing container
- Container left at room temperature and exposed to a natural day/night cycle
- Mosquitoes transferred as pupa to a holding cage with a cotton ball doused in 10% sucrose solution

Stuff for field and

Holding cage placed in an incubator set to 25°C with a 12hour day/night cycle


CDC Bottle Bioassay Kit

"The **diagnostic dose** is a dose of insecticide that kills 100% of susceptible mosquitoes within a given time.

The expected time for the insecticide to achieve this objective is called the **diagnostic time**."

		Insecticide	Diagnostic time (min)			
Common name	Trade name	Chemical name	IRAC Classification	Туре	concentration (µg/bottle)	Aedes albopictus
Permethrin	DeLice	3-phenoxybenzyl (1RS)-cis, trans-3-(2,2- dichlorovinyl)-2,2- dimethylcyclopropanecarboxylate	3A	Pyrethroid	43	10

WHO recommendations for assessing the significance of detected resistance

97%–100% mortality indicates susceptibility
90%–96% mortality suggests the possibility of resistance that needs to be confirmed
<90% mortality suggests resistance

Note: Where <95% mortality occurs in bioassays conducted that under optimum conditions and with a sample size of >100 mosquitoes, then resistance can be strongly suspected.

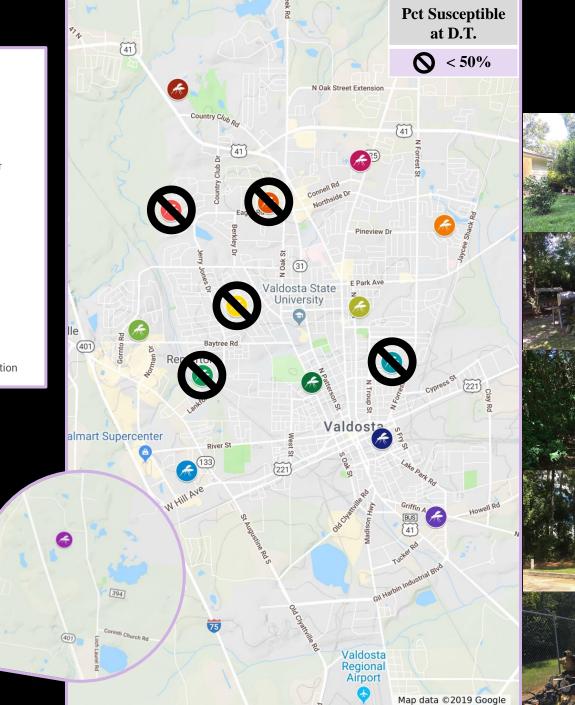
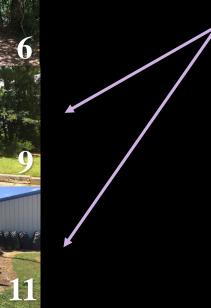
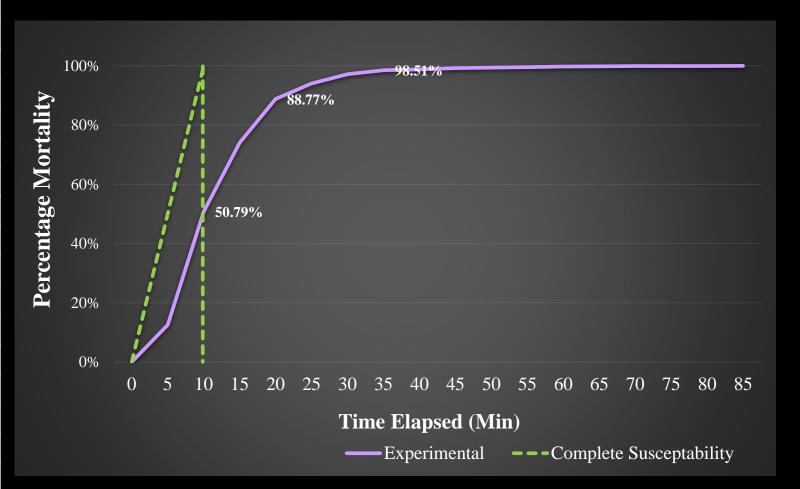

	Site Number																
Time Elapsed (min)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
5	18	2	10	4	23	2	10	4	8	18	0	5	21	2	16	0	
10	43	40	56	5	65	19	48	42	23	5	3	20	11	28	14	14	
15	17	8	41	10	25	11	35	16	35	14	3	5	12	7	12	14	
20	7	5	27	17	23	40	10	5	9	2	1	4	4	2	2	10	
25	5	4	14	1	3	7	2	13	4						3	4	
30	4	1	4	12	5	4	1	0	2						0	3	
35	1	1	0	3	2	3	0	2	1						1	1	Pct Susceptible at D.T.
40		0		0		0	1	0	1							0	at D.1.
45			0	1		2		0	1							$\frac{0}{2}$	< 50%
50 55		0 0	0 0					0								2	$\geq 50\% - 59\%$
60		1	0					1								1	≥ 60%
65			1													0	
70			0													1	
75			0														
80			0														
85			1														
Site Count	95	63	155	53	146	88	107	83	84	39	7	34	48	39	48	51	
Total Count	1140																

Table showing site counts of tested A. albopictus and distribution of mortality over 5-minute intervals


- left Signal State of the Gradien State of the Gradee State of the Gradien State of the Gradie
- left 3019 Kensington Ln
- 1201 Ravenwood Cir
- 313 Simpson Pl
- 6 1786 Jimmy Carter Dr
- 6 800-800-A E Park Ave
- l 700 Charlton St 🎯
- l 574 Baytree Rd
- 🕝 1739 W Gordon St
- 🕝 1007 N Oak St
- 🕝 1017 Myrtle St
- 🥝 204 Nan St
- 🕝 410 Wooding Ln
- left 602 Conoley Ave
- lake Louise Field Station



Egg Collection Sites

Both non-residential sites tested for less than 50% susceptibility at the diagnostic time.

Time Elapsed (min)	No. Mosquitoes	Pct. Mosquitoes				
5	143	12.54%				
10	436	38.25%				
15	265	23.25%				
20	168	14.74%				
25	60	5.26%				
30	36	3.16%				
35	15	1.32%				
40	3	0.26%				
45	5	0.44%				
50	2	0.18%				
55	2	0.18%				
60	2	0.18%				
65	1	0.09%				
70	1	0.09%				
75	0	0.00%				
80	0	0.00%				
85	1	0.09%				

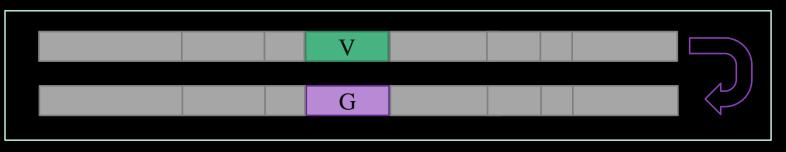
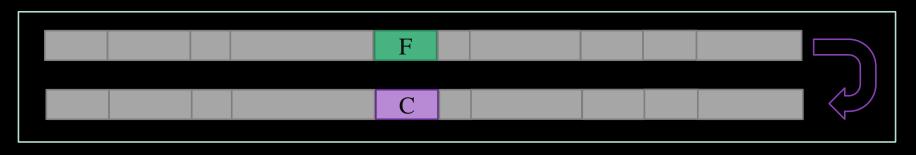

Graph showing experimental rate of mortality versus theoretical rate of mortality for completely susceptible *A. albopictus*

Table showing *A. albopictus* mortality counts and percentages among all collection sites

KDR Mutations


V1016G mutation: domain II of VGSC, voltage gated sodium channel gene, undergoes a valine to glycine substitution

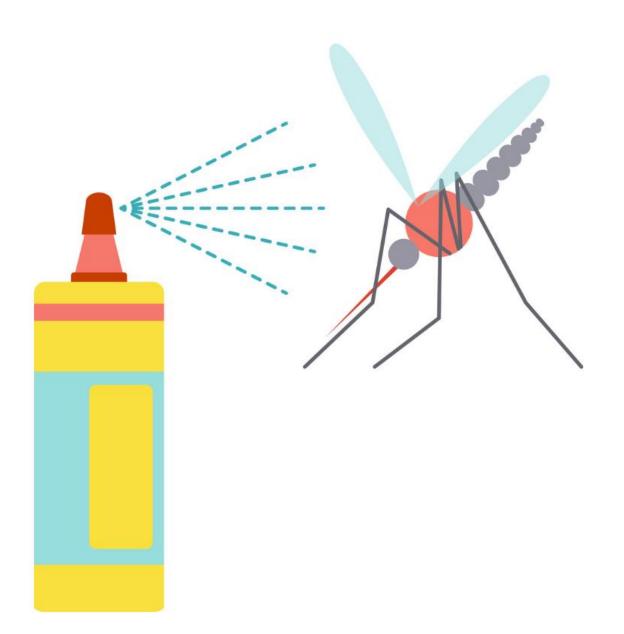
• associated with resistance to type I and II pyrethroids

F1534C mutation: domain III at this position undergoes a phenylalanine to cysteine substitution

• associated with resistance to type I pyrethroids

Multiplex PCR: Detection of KDR Alleles

AS-PCR: allele-specific polymerase chain reaction


Possible Genotypes at 1016 VV: homozygous susceptibility VG: heterozygous GG: homozygous resistance

Possible Genotypes at 1534 FF: homozygous susceptibility FC: heterozygous CC: homozygous resistance

Genotyping results amplified by gel electrophoresis

